Acta Crystallographica Section E

Structure Reports

Online

t-3-Methyl-1-nitroso-r-2,c-6-diphenylpiperidin-4-one oxime monohydrate

ISSN 1600-5368

R. Hema, ${ }^{\text {a }}$ V. Parthasarathi, ${ }^{\text {a }}$ K. Ravikumar, ${ }^{\text {b }}$ K. Pandiarajan ${ }^{\mathrm{c}}$ and G. Muthukumaran ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, ${ }^{\text {b }}$ Laboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ${ }^{\text {c }}$ Department of Chemistry, Annamalai University, Annamalai Nagar 608 002, India

Correspondence e-mail: vpsarati@yahoo.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.050$
$w R$ factor $=0.136$
Data-to-parameter ratio $=7.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved
\qquad

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, the piperidine ring adopts a distorted boat conformation. In the solid state, the molecules are linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds involving water molecules.

Comment

Many piperidine derivatives are found to possess pharmacological activities and form an essential part of the molecular structure of important drugs. The piperidine ring is a feature of oral anaesthetics (McElvain, 1927) and narcotic analgesics (Lu et al., 1991). The X-ray structure determination of the title compound, (I), was carried out with the aim of establishing the influence of the nitroso and oximino groups on the conformation of the piperidine ring and also on the orientation of the substituents.

(I)

Compound (I) is analogous to a related structure, 3,5-dimethyl- N-nitroso-4-oximino-2,6-diphenylpiperidine-4-one oxime, (II) (Sukumar et al., 1994), except for the presence of a methyl group at C5 in (II). As observed in (II), the piperidine ring in (I) adopts a distorted boat conformation [Cremer \& Pople (1975) puckering parameters are $Q=0.657$ (3) $\AA, \theta=$ $94.1(3)^{\circ}$ and $\left.\varphi=251.5(2)^{\circ}\right]$, with the methyl group at C 3 in the axial orientation (Fig. 1). The dihedral angle between the $\mathrm{N} 1 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 6$ and nitroso ($\mathrm{N} 1 / \mathrm{N} 21 / \mathrm{O} 22$) planes is $35.7(1)^{\circ}$ [39.8 (1) ${ }^{\circ}$ for (II)]. The dihedral angle between the N1/C3/C4/ C 6 and the oximino ($\mathrm{C} 4 / \mathrm{N} 23 / \mathrm{O} 24$) planes is $16.8(3)^{\circ}$ [13.8 (3) ${ }^{\circ}$ for (II)]. The dihedral angle between the nitroso and oximino groups is $52.0(2)^{\circ}$ [52.8 (2) ${ }^{\circ}$ for (II)].

As observed in (II), the benzene ring at C 2 has a roughly perpendicular orientation, with a $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 14$ torsion angle of $74.3(3)^{\circ}\left[68.6(3)^{\circ}\right.$ for (II)], and the benzene ring at C6 has a coplanar orientation, with a $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 8$ torsion angle of $-170.8(3)^{\circ}\left[-171.7\right.$ (3) ${ }^{\circ}$ for (II)]. The C8C13 and C14-C19 planes form dihedral angles of 75.8 (1) and 87.3 (1) ${ }^{\circ}$, respectively, with the $\mathrm{N} 1 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 6$ plane. The dihedral angle between the C8-C13 and C14-C19 benzene rings is $66.9(1)^{\circ}$ for (I) and 59.2 (1) $)^{\circ}$ for (II).

Received 8 November 2005 Accepted 21 November 2005 Online 26 November 2005

Figure 1
A view of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary radii.

Superposition of the non-H atoms common to the structures of (I) and (II) gives an r.m.s. deviation of $0.546 \AA$. For comparison, the matrix of the r.m.s. deviations for the superposition of the non-H atoms common to the structures of (I), (II), $\quad r$-2,c-6-bis(2-chlorophenyl)- t-3, t-5-dimethyl-1-nitroso-piperidin-4-one oxime, (III) (Hema, Parthasarathi, Ravikumar, Sridhar, Pandiarajan \& Muthukumaran, 2005), and r -2,c-6-bis(4-chlorophenyl)-t-3,t-5-dimethyl-1-nitrosopiperidin-4-one oxime, (IV) (Hema, Parthasarathi, Ravikumar, Sridhar \& Pandiarajan, 2005) is given in Table 1, with the superposition shown in Fig. 2. The data in Table 1 show that the most profound effect on the conformation of the piperidine derivatives is observed when there is no substituent, such as a methyl group, present at the C 5 postion of the piperidine ring. A comparative study on the structures of these molecules shows that the substitution of heavy atoms such as Cl at the para- and ortho-positions of the phenyl rings does not significantly alter the conformation of the piperidine ring.

In (I), the molecular packing is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ intermolecular interactions involving water molecules (Fig. 3). The water molecule links three different piperidine molecules. Atom O24 of the oximino group acts as a donor for an intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}(-1+x, 1+y, z)$ interaction (via atom H 24), while atom $\mathrm{O} 1 W$ of the water molecule acts as the acceptor, to form a chain described by a graph-set motif of $C(10)$ (Bernstein et al., 1995; Table 2). Atom $\mathrm{O} 1 W$ is similarly involved in another intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N}\left(1-x,-\frac{1}{2}+y,-z\right)$ interaction with the oximino atom N 23 (via atom $\mathrm{H} 1 W$) of another adjacent molecule and thereby links the molecules into a continuous chain to form a graph-set motif of $C(5)$. Interestingly, atom $\mathrm{O} 1 W$ acts as a donor for two other intermolecular interactions in the same

Figure 2
A view of the superposition of the structures of compounds (I) (black), (II) (green), (III) (red) and (IV) (blue).
asymmetric unit. Atom O1W acts as donor via atom $\mathrm{H} W 2$ to atoms O 22 and N 21 of the nitroso group substituted at N 1 .

Experimental

t-3-Methyl- r-2,c-6-diphenylpiperidine-4-one (50 mmol) and sodium acetate trihydrate (150 mmol) were dissolved in boiling ethanol $(100 \mathrm{ml})$, and hydroxylamine hydrochloride (60 mmol) was added. The mixture was heated under reflux for 15 min and poured into water. The separated compound, (I), was filtered off and recrystallized from ethanol (yield 75%, m.p. $445-447 \mathrm{~K}$).

Figure 3
The crystal packing of (I), viewed down the a axis. Dashed lines indicate $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$D_{x}=1.259 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=327.38$	Mo $K \alpha$ radiation
$\begin{aligned} & \text { Monoclinic, } P 2_{1} \\ & a=7.9578(13) \AA \end{aligned}$	Cell parameters from 3835 reflections
$b=7.0567$ (12) \AA	$\theta=2.6-25.0^{\circ}$
$c=15.642$ (3) \AA	$\mu=0.09 \mathrm{~mm}^{-1}$
$\beta=100.483$ (3) ${ }^{\circ}$	$T=273$ (2) K
$V=863.7$ (3) \AA^{3}	Block, colourless
$Z=2$	$0.24 \times 0.24 \times 0.20 \mathrm{~mm}$
Data collection	
Bruker SMART CCD area detector diffractometer	1544 reflections with $I>2 \sigma(I)$ $R_{\mathrm{int}}=0.036$
ω scans	$\theta_{\text {max }}=25.0^{\circ}$
Absorption correction: none	$h=-9 \rightarrow 9$
8200 measured reflections	$k=-8 \rightarrow 8$
1665 independent reflections	$l=-18 \rightarrow 18$
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1019 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$	+ $0.0428 P]$
$w R\left(F^{2}\right)=0.136$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=1.08$	$(\Delta / \sigma)_{\text {max }}=0.001$ 。
1665 reflections	$\Delta \rho_{\text {max }}=0.26 \mathrm{e}^{\AA^{-3}}$
227 parameters	$\Delta \rho_{\text {min }}=-0.16 \mathrm{e}^{\text {A }}{ }^{-3}$
H atoms treated by a mixture of independent and constrained refinement	

Table 1
Matrix of r.m.s. deviations (\AA) for the superposition of the non-H atoms common to the structures of (I)-(IV).

Compound	(I)	(II)	(III)
(II)	0.546		
(III)	0.577	0.200	
(IV)	0.536	0.132	0.209

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O24-H24 $\cdots \mathrm{O}^{2} W^{\mathrm{i}}$	0.82	1.84	$2.636(4)$	164
O1 $W-\mathrm{H} 1 W \cdots \mathrm{~N} 23^{\text {ii }}$	$0.87(6)$	$2.16(6)$	$2.947(4)$	$150(5)$
O1 $W-\mathrm{H} 2 W \cdots \mathrm{O} 22$	$0.80(8)$	$2.03(9)$	$2.822(5)$	$169(8)$
O1 $W-\mathrm{H} 2 W \cdots \mathrm{~N} 21$	$0.80(8)$	$2.48(8)$	$3.233(5)$	$158(8)$
Symmetry codes: (i) $x-1, y+1, z ;$ (ii) $-x+1, y-\frac{1}{2},-z$.				

H atoms of the water molecule were located in a difference Fourier map and their positions were refined freely along with their isotropic displacement parameters. All other H atoms were placed in idealized positions, with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}$ (carrier atom) for methyl and hydroxy H atoms, and $1.2 U_{\text {eq }}(\mathrm{C})$ for the remaining H atoms. The methyl groups were allowed to rotate freely about their $\mathrm{C}-\mathrm{C}$ bond. In the absence of any significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration was assigned to correspond to that of the known chiral centres in a precursor molecule, which remained unchanged during the synthesis of the title compound.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and QMOL (Gans \& Shalloway, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

RH thanks the UGC, India, for the award of an FIP fellowship (2005-2007). RH also gratefully acknowledges the help rendered by Dr B. Sridhar in the data collection.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gans, J. \& Shalloway, D. (2001). J. Mol. Graphics Modelling, 19, 555-559.
Hema, R., Parthasarathi, V., Ravikumar, K., Sridhar, B., Pandiarajan, K. \& Muthukumaran, G. (2005). Acta Cryst. E61, o3987-o3989.
Hema, R., Parthasarathi, V., Ravikumar, K., Sridhar, B. \& Pandiarajan, K. (2005). Acta Cryst. E61, o4345-o4347.

Lu, Z. Y., Zaho, S. Y., Yuaw, X. M. \& Yang, Y. L. (1991). Chem. Abstr. 114, 815135.

McElvain, S. M. (1927). J. Am. Chem. Soc. 49, 2835-2840.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sukumar, N., Ponnuswami, M. N., Vijayalakshmi, R. \& Jeyaraman, R. (1994). Z. Kristallogr. 209, 823-825.

